

User Manual

Version 1.1.0 September 2024

About SimStream-Web

SimStream-Web is a web service available at the url: <u>https://mesohabsim.isprambiente.it/</u>. It allows to obtain, for perennial and temporary rivers, the following outputs:

A. The habitat availability, over space and time, for target species (or life stages) of interest. In particular, the service generates the geo-referenced habitat maps in a shapefile format, the habitat-flow rating curves and the habitat time series.

B. The Habitat Integrity Index (IH) associated with one or more hydrological or morphological management scenarios at the reach, segment or catchment scale.

Contents

1. Accessing SimStream-Web
2. Perennial river: site data and project settings
3. Perennial river: hydro-morphological data6
4. Temporary river: site data and project settings
5. Temporary river: hydro-morphological data11
6. Streamflow time series
7. Species and life stage selection
8. Output selection
9. Merge Projects
10. Download session

1. Accessing SimStream-Web

SimStream-Web can be run by accessing to the web page <u>https://mesohabsim.isprambiente.it/</u>. The first page (Figure 1) asks for personal login credentials. If personal login credentials are not available, please ask for registration by contacting the e-flow team at <u>eflows@isprambiente.it</u>.

Nolcomo to Si	nStream-Web (v 1.0.0). If you already have an account please loc
	utton below. If you are a new user please ask for registration by contacting our team.
user1	
•••••	
	Log in

Figure 1: SimStream-Web login form.

After the first log in, the user has to read and accept the terms of service; in particular, the user needs

- To accept the terms of the GNU GPL v3 license;

- To use, for his/her own protection, the Creative Commons Attribution-Non Commercial-No Derivs 4.0 license (acronym: CC BY-NC-ND 4.0) to upload the data in the SimStream-Web service;

- To use the outputs of the SimStream-Web service under the terms of the Creative Commons Attribution-No Derivs 4.0 license (acronym: CC BY-ND 4.0);

- To provide feedbacks on the applications of the MesoHABSIM methodology and the use of the SimStream-Web service.

The SimStream-Web Homepage (Figure 2) shows two possible sessions: "*Calculate session*" and "*Download session*". The former allows the user to insert hydro-morphological information to evaluate river habitats, whereas the latter allows the user to download results from the SimStream-Web project database.

SimStream-Web project database

Figure 2: SimStream-Web Homepage.

By accessing the "Calculate session" (Figure 3), the user can:

- (i) start compiling a "*New project*", by inserting hydro-morphological information to evaluate river habitats, or
- (ii) calculate the Habitat Integrity Index (IH) at a river segment or at a catchment scale by merging results from previous projects (see section 9 of the present User Manual).

New project	Merge projects
Start compiling a new project	Calculate the Habitat Integrity Index (IH) at the river segment or catchment scale
GO	GO

Figure 3: Calculate session page.

2. Perennial river: site data and project settings

Once the "*New project*" page has been opened, the project information can be set in the "*Site data and project settings*" section (Figure 4). It is important to highlight that, in every section, help pages are provided to show additional information on the data meaning and format. The help pages can be visualized by clicking on the "*Help*?" top-right button (see Figure 4).

Site data	Surveys		Series	Spe	ecies		Output
Site data and project setting	S						Help?
(*) Project		(*) River		(*)	Site		
Argentina_perennial		Argentina			Montalto		
Country	Municipality		Region			Province	
Italia	Montalto		Liguria			Imperia	
Temporary river?			Habitat-flow ratin	g curve availal	ble?		
No, the stream flows contin	nuously during the ye	ar (perennial river)	No previous N	/lesoHABSIN	/l project a	available	\$
No, the stream flows contin Yes, the stream periodically							(*) Mandatory fiel
Create Project	course to non (tomp	eral j mer,					

Figure 4: Site data and project settings (perennial river).

Project, River and Site names are mandatory fields and are required in Latin alphabet. Any special character, accent, apostrophe, or symbol must be avoided (e.g., the word "Démêlé" must be changed to "Demele"). Additional, non-mandatory data refer to the Country, Municipality, Region and Province of the study site.

From the drop-down menu at the bottom left (Figure 4), the user can select the river hydrological regime, distinguishing between "*perennial river*" and "*temporary river*". By setting the project type to the option "*perennial river*" (default setting), zero-discharge values are not allowed for both Hydro-Morphological Surveys and Streamflow Time Series. By setting the project type to the option "*temporary river*", the software allows to enter zero-discharge values and requires additional data inputs aimed at describing the riverbed drying process after flow cessation.

From the drop-down menu at the bottom right (Figure 5), the user has the possibility to create a new project from scratch or chose an existing, previous one. By selecting the option "*No previous MesoHABSIM project available*" (default setting), a new project will be created. If the option "*Yes, take the curve from a previous MesoHABSIM project*" is selected, the user can choose the project from which the habitat-flow rating curve will be extracted (Figure 6).

Site data	Surveys		Series	Speci	es		Output
Site data and project settings							Help?
(*) Project		(*) River		(*) 5	ite		
Argentina_perennial		Argentina		N	lontalto		
Country	Municipality		Region			Province	
Italia	Montalto		Liguria			Imperia	
Temporary river?			Habitat-flow rating curve	e availabl	e?		
No, the stream flows continu	iously during the yea	r (perennial river) 🗢	No previous MesoH	IABSIM	project a	vailable	\$
			No previous MesoH				
			Yes, take the curve f	from a p	revious	MesoHABSIM	project
Create Project							

Figure 5: No habitat-flow rating curve available from previous projects.

) Project () River Argentina_perennial Argentina Country Municipality Municipality Region Italia Montalto Italia Montalto Femporary river? Habitat-flow rating curve available? No, the stream flows continuously during the year (perennial river) \$	Site data	Surveys	2	Series	Species	(Dutput
Argentina_perennial Argentina Municipality Region Italia Montalto Italia Montalto Femporary river? Habitat-flow rating curve available? No, the stream flows continuously during the year (perennial river) \$	Site data and project settings	5					Help?
Country Municipality Region Province Italia Montalto Liguria Imperia Imporary river? Habitat-flow rating curve available? No, the stream flows continuously during the year (perennial river) Yes, take the curve from a previous MesoHABSIM project	*) Project		(*) River		(*) Site		
Italia Montalto Liguria Imperia Temporary river? Habitat-flow rating curve available? No, the stream flows continuously during the year (perennial river) Yes, take the curve from a previous MesoHABSIM project	Argentina_perennial		Argentina		Montal	to	
Temporary river? Habitat-flow rating curve available? No, the stream flows continuously during the year (perennial river) Yes, take the curve from a previous MesoHABSIM project	Country	Municipality		Region		Province	
No, the stream flows continuously during the year (perennial river) + Yes, take the curve from a previous MesoHABSIM project	Italia	Montalto		Liguria		Imperia	
	Temporary river?			Habitat-flow rating c	urve available?		
Habitat-flow rating curve input Choose a project (perennial river)	No, the stream flows continu	uously during the yea	ar (perennial river) 🗢	Yes, take the curv	ve from a previo	us MesoHABSIM proj	ject 🗢
	Habitat-flow rating curve input			Choose a project (pe	rennial river)		
Habitat-flow rating curve from a previous project output Please select an option	Habitat-flow rating curve fro	om a previous projec	t output 🔶	Please select an	option		\$

Figure 6: Habitat flow-rating curve available from previous projects.

After entering the required data, the user can create a new project by pressing the "*Create project*" button and confirm the data entry. The user can now click "*Next*" to proceed to the next page or click "*Delete*" to remove the entered data.

3. Perennial river: hydro-morphological data

For a perennial river, the data requested for each hydro-morphological survey are the following (see Figure 7):

- i. Date of the survey.
- ii. Discharge expressed in m³/s. Inserted discharge values must be in increasing order.
- iii. Hydro-Morphological Units (HMUs) as a shapefile, composed by a set of 4 files (file extensions: .shp, .shx, .dbf, and .prj).
- iv. Point measurements as a tab-delimited text (.txt) composed by the measurements of depth, velocity and substrate taken in every HMU.

After entering all hydro-morphological data, a check on the physical consistency among all hydromorphological surveys will be automatically performed. Simple rules must be respected:

- wetted area must increase as discharge increases;
- flow velocity distribution must reasonably increase as discharge increases;
- water depth distribution must reasonably increase as discharge increases;
- substrate frequency distribution must reasonably be similar among surveys with similar wetted area values.

If the previous rules are not respected warning logs will pop up. Warning logs, resulting from the data validation process, are important information provided for the user, and can be visualized by clicking on the *"Show warning logs"* yellow button (Figure 8).

To confirm surveys data entry, the user can click "*Save survey*" or "*Save survey and add new one*" and wait for data validation. The user can also modify the previously entered data and confirm the change with the "*Save survey*" button, as well as remove the files containing the entered data by clicking on the icon (see Figure 8).

Site	e data	Surveys		Series	Species	Out	put
leaders are small							_
-lydro-morph	ological data (p	perennial river)					Help?
New Survey							
New Survey							
1	Date		Discharge	e [m³/s]			
	Wednes	day, July 29, 2015	0.25				
	Hydro-morpholog	gical unit map			Point measurements		
	4 files selected			Browse	argentina_tabella_testo-0.25m3s-29-07-201	5.txt	Browse
	You have to select the any order is valid)	4 files collected as a shapefile (file extensi	ions are .shp .	shx .dbf .prj,	You have to select 1 file (file extension is .bxt)		
	any order is valid,						
					Save survey and add	new one	Save survey
						Previo	us Next

Figure 7: Hydro-morphological data entry (perennial river).

ydro-mor	phological data (p	perennial river)						Help?
Vew Survey	_						Sho	w warning logs
1	Date		Discharge	e [m³/s]				Û
2	📋 Friday, A	pril 10, 2015	2.20					_
3	Hydro-morpholog	gical unit map			Point measure	ements		
4	4 files selected			Browse	argentina_t	abella_testo-2.20m3s-10-04-2	2015.txt	Browse
	You have to select the any order is valid)	4 files collected as a shapefile (file	extensions are .shp .	shx .dbf .prj,	You have to selec	ct 1 file (file extension is .txt)		
							Previou	ıs Next
4	You have to select the	4 files collected as a shapefile (file	extensions are .shp .		_		2015.txt	B

Figure 8: End of Hydro-morphological data entry (perennial river).

Once the hydro-morphological data are successfully uploaded, the user can click "*Next*" to continue to the next page ("*Series*") or click "*Previous*" to return to the previous page ("*Site data*").

4. Temporary river: site data and project settings

Temporary rivers are defined as watercourses that may dry up for some period of time within the year (EU Water Framework Directive – WFD 2000/60/CE). As for perennial rivers, Project, River and Site names are mandatory fields and are required in Latin alphabet. Any special character, accent, apostrophe, or symbol must be avoided (e.g., the word "Démêlé" must be changed to "Demele"). Additional, non-mandatory data refer to the Country, Municipality, Region and Province of the study site.

From the drop-down menu at the bottom left (Figure 9), the user can select the river hydrological regime, distinguishing between "*perennial river*" and "*temporary river*". By setting the project type to the option "*temporary river*", the software allows to enter zero-discharge values and requires additional data inputs aimed at describing the riverbed drying process after flow cessation.

Site data	Surveys		Series	Species		Output
Site data and project settir	igs					Help?
(*) Project		(*) River		(*) Site		
Gaia_temporary		Gaia		El Catllar		
Country	Municipality	,	Region		Province	
Spain	El Catllar		Catalogna		Tarragona	
Temporary river?			Habitat-flow rating curve	available?		
No, the stream flows cont	inuously during the y	ear (perennial river) 🗢	No previous MesoH	ABSIM project	available	÷
No, the stream flows cont Yes, the stream periodical Create Project						(*) Mandatory field

Figure 9: Site data and project settings (temporary river).

By setting the project type to the option "*temporary river*", the river drying information is requested (Figure 10). From the drop-down menu, the user can:

- (i) select "*river drying case*" if the wetted area, as well as the aquatic habitat availability, gradually reduces to zero;
- (ii) select "*permanent ponding case*" if the ponding phase lasts indefinitely even if the surface flow rate is zero for a long time period. This situation can happen in reaches fed by groundwater and the analysed river reach can be characterized by a permanent ponding phase.

Site data	Surveys	Series	Species	Output
River drying information				Help?
Does the river dry up within the ye	ear?			
	\$			
Yes, the river dries up (river of No, isolated ponds never dr	drying case) y (permanent ponding case)			
· · · · · ·				Previous Next

Figure 10: Selection between "river drying case" and "permanent ponding case".

After selecting the river drying information, the user has to insert:

- (i) the "*Number of days to have a dry riverbed after flow ceased*" for a river drying case (Figure 11);
- (ii) the "Number of days to reach permanent ponding phase" for a permanent ponding case (Figure 12).

To confirm river drying information entry, the user has to click "Save information".

SIM STREAM®				user1 🚨 🕞
Site data	Surveys	Series	Species	Output
River drying information				Help?
Does the river dry up within the ye	ear?	Number of days to have a di	ry riverbed after flow ceased (Q=0)	
Yes, the river dries up (river	drying case)	5		Save information
				Previous Next

Figure 11: Setting the parameter "Number of days to have a dry riverbed after flow ceased" for a river drying case.

Surveys	Series	Species	Output
			Help?
ar?	Number of days to reach per	rmanent ponding phase	
(permanent ponding cas 🗢	5		Save information
			Previous Next
			I TENOUS TREAT
	ar?	ar? Number of days to reach pe	ar? Number of days to reach permanent ponding phase

Figure 12: Setting the parameter "Number of days to reach permanent ponding phase" for a permanent ponding case

.

5. Temporary river: hydro-morphological data

For a temporary river, the data requested for each hydro-morphological survey are the following (see Figure 13):

- i. Date of the survey.
- Discharge expressed in m³/s. For temporary rivers, zero-flow values (Q=0 m³/s) are allowed. Inserted discharge values must be in increasing order.
- iii. Number of days after Q=0 m³/s. This input is only required when surveys are carried out at zero-flow conditions. This parameter represents the time period (expressed in days with a floating point number) between the date of the survey and the date in which the flow ceased. Surveys at zero-flow conditions must be entered before surveys at flow Q>0 m³/s. It is compulsory to start inserting the data with the survey with the highest value of the number of days after Q=0 and the lower wetted area value.
- iv. Hydro-Morphological Units (HMUs) as a shapefile, composed by a set of 4 files (file extensions: .shp, .shx, .dbf, and .prj).
- v. Point measurements as a tab-delimited text (.txt) with the measurements taken in every HMU.

After entering all hydro-morphological data, it may be possible that the user needs to check the physical consistency of all hydro-morphological surveys. Specifically, the user can verify a few simple rules:

- wetted area must increase as discharge increases;
- flow velocity distribution must reasonably increase as discharge increases;
- water depth distribution must reasonably increase as discharge increases;
- substrate frequency distribution must reasonably be similar among surveys with similar wetted area values.

If the previous rules are not respected warning logs will pop up. Warning logs, resulting from the data validation process, are important information provided for the user, and can be visualized by clicking on the *"Show warning logs"* yellow button. To confirm surveys data entry, the user can click "*Save survey*" or "*Save survey and add new one*" and wait for data validation. The user can also modify the previously entered data and confirm the change with the "*Save survey*" button, as well as remove the files containing the entered data by clicking on the **"** icon.

	Site data	Surveys		Series		Species	Outp	out
River dryir	ng information							
Does the riv	er dry up within the y	rear?	Nun	nber of days to ha	ive a dry rivei	rbed after flow ceased (Q=0)		
Yes, the r	river dries up (river	\$ 5				Re	set information	
New Surve			Discharge	a [m ³ /c]		Number of days after O=0 [d	lavel	
New Surve	Date	y, June 24, 2017 gical unit map	Discharge 0		Point measure	Number of days after Q=0 [d 1.25 ements	lays]:	
New Surve	Date Saturday Hydro-morpholo 4 files selected	gical unit map	0	Browse	Point measur gaia-tabella	1.25	·	Browse

Figure 13: Hydro-morphological data entry (temporary river).

Once the hydro-morphological survey data are successfully uploaded, click "*Next*" to continue to the next page ("*Series*") or click "*Previous*" to return to the previous page ("*Site data*").

6. Streamflow time series

If the user has previously entered at least 3 hydro-morphological surveys with $Q>0 \text{ m}^3/\text{s}$, it is possible to build habitat-flow rating curves and to carry out time series analysis. For temporary rivers, hydro-morphological surveys with zero-flow values ($Q=0 \text{ m}^3/\text{s}$) do not count towards the aforementioned minimum amount of surveys.

By entering streamflow time series (Figure 14), Habitat Time Series, Uniform Continuous Under Threshold (UCUT) curves and the Habitat Integrity Index (IH) can be calculated. The format of the streamflow time series file is a tab-delimited text (.txt), containing discharge values at daily scale. Blank spaces (space characters given by the space bar), or empty rows, are not accepted. The tab-delimited text must contain; the date (format DD/MM/YYYY); the reference time series (reference hydrological conditions); and the altered time series (altered hydrological conditions, see the SimStream-Web help page for details, by clicking the "*Help?*" top-right button).

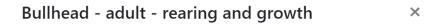
Site data	Surveys	Series	Species	Output
ime Series Analysis & Unifor	m Continuous Under Thresho	old (UCUT) curves		Help
Streamflow time series				
series_Montalto_2008-2010.tz	xt			Browse
You have to select 1 file (file extension i	is .txt)			
				Save series
				Previous

Figure 14: Streamflow time series entry.

To confirm streamflow time series file entry, the user has to click "*Save series*". Once the Streamflow Time Series files are successfully uploaded, the user can click "*Next*" to continue to the next page ("*Species*") or click "*Previous*" to return to the previous page ("*Surveys*").

7. Species and life stage selection

The species and life stage selection can be carried out from three drop-down menus (Figure 15), from which the user can select (i) the species, (ii) the life stage, and (iii) the biological model of interest. To confirm the choice the user has to click the "*Add*" button.


Once the species and the biological model is selected, by clicking "*Show model details*" (Figure 16) the user can visualize the statistical model that predicts habitat availability (i.e., species absence, presence and abundance, Figure 17). In the Partial Dependence Plot (PDP, e.g. in Figure 17), variable importance decreases from left to right and from top to bottom. Model's performance (Accuracy, Sensitivity, Specificity and True Skill Statistics) are shown next to the figure (e.g. Figure 17). The user can click on the icon to remove the entered data. Lastly, the user can click "*Next*" to continue to the next page ("*Output*") or click "*Previous*" to return to the previous page ("*Series*").

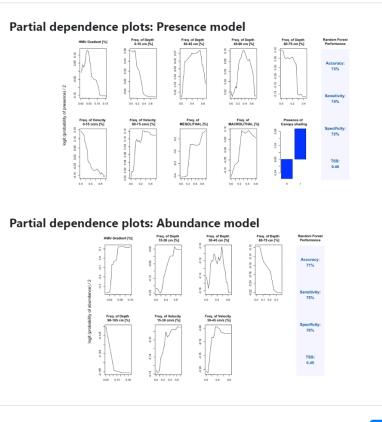

M STREAM®				user1 🛔
Site data	Surveys	Series	Species	Output
ecies and life stage selecti	on			
Species:		Life stage:	Model:	
	\$	+		\$
MACROINVERTEBRATE	COMMUNITY			
White-clawed crayfish (Austropotamobius pallipes)		
				Previous Ne
FISH COMMUNITY				
Barbel (Barbus sp.)				
Brown trout (Salmo trut	ta)			
Bullhead (Cottus gobio)				
Marble trout (Salmo ma	rmoratus)			
No fish (Reaches withou	ıt fish fauna)			
Twaite shad (Alosa falla	x)			
Danube barbel (Barbus	balcanicus)			
Three-spined sticklebad	ck (Gasterosteus aculeatus)		
Po brook lamprey (Lamp	oetra zanandreai)			
Italian spring goby (Knip	oowitschia punctatissima)			
	rotochondrostoma genei)			
Italian chub (Squalius so				
Italian barbel (Barbus pl				
Vairone (Telestes mutic				
Grayling (Thymallus thy				
Padanian goby (Padogo				
Stone loach (Barbatula I				
European eel (Anguilla a				
Spined loach (Cobitis bi	100000 CO.			
Alborella (Alburnus arbo	orella)			

Figure 15: Selectable species, life stage and biological model selection.

Site data		irveys	Series	Species	Output
Species and life stag	ge selection				
Species:			Life stage:	Model:	
Brown trout (Sa	ilmo trutta)	\$	juvenile	\$ rearing and growth \blacklozenge	
Species	🔷 Life stage	Model Model		\$	
Brown trout	adult	rearing and	growth	Show model details	
Brown trout	juvenile	rearing and	growth	Show model details	
					Previous

Figure 16: Selected information for species, life stage and biological models.

OK

Figure 17: Biological model details.

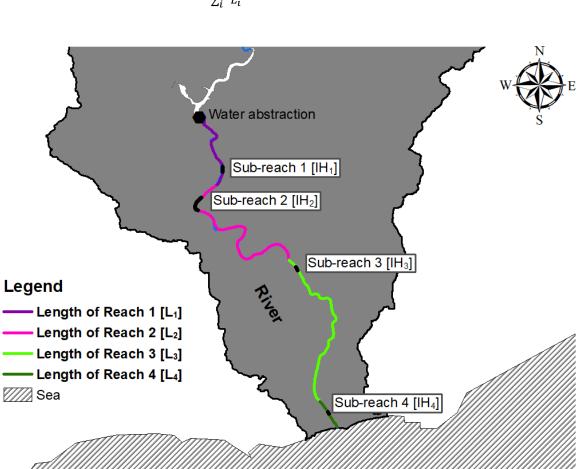
8. Output selection

In the last section of the entry data procedure, the user can select the model output categories to be provided by SimStream-Web (Figure 18) or click "*Previous*" to return to the previous page ("*Species*").

By selecting at least one output category and clicking "*Submit*", the project data will be processed by SimStream-Web. In case of successful data submission, an e-mail will be sent and a message will be displayed (Figure 19).

Site data	Surveys	Series	Species	Output
Output selection				
 Hydro-morphological unit d 	lata			
Biological model results				
 Habitat suitability 				
Habitat-flow rating curve				
Streamflow-habitat time ser	ies			
UCUT curves				
 Habitat Integrity index 				
				Previous Submit

Figure 18: Output selection page.


Project data correctly formatted. Please wait to download the calculation results from your download session.

ОК

Figure 19: Successful project submission.

9. Merge Projects

If the habitat assessment involves more than one river reach within the same catchment, a global Habitat Integrity Index (IH_{glob}) can be calculated by merging previously uploaded projects. The IH_{glob} value can be calculated, at a river segment or at a catchment scale, as the weighted mean of IH values (IH_i) . The weights of IH_i are given by the lengths of the river reaches $(L_i, \text{ expressed in km})$, as shown in the formula [Eq. (1)] and in the illustrative figure below (Figure 20).

 $IH_{glob} = \frac{\sum_{i}^{\square} (IH_{i} * L_{i})}{\sum_{i}^{\square} L_{i}}$ Eq. (1)

Figure 20: Example of habitat assessment involving more than one river reach within the same catchment.

To merge projects, the user can select previous results of the IH index from the two drop-down menus, which report the project ID, the name of the river, the study site and the desired hydrological scenario (Figure 21). In addition, the user has to insert the length of the hydro-morphological reach to be used as a weight parameter in the analysis. After entering this information, the user can click "*Add*" to confirm the choice or to click on the icon to remove the entered data. Once all projects have been selected, the user can click "*Merge projects*" and an output message will be displayed (Figure 22).

Merge p	roject session								Help
Select p	t project: Select scenario: Hydr				Hydromorph	Hydromorphological reach length [km]:			
		\$			\$				Add
ID	Name		River	♦ Site	🗘 Lengti	h [Km]	Scenario	≑ IH	\$
1569	Argentina_sub-reach_1		Argentina	Site_1	25		ALTERED_1	0.97	D
1570	Argentina_sub-reach_2		Argentina	Site_2	10		ALTERED_4	0.64	a
1571	Argentina_sub-reach_3		Argentina	Site_3	5		ALTERED_6	0.55	D
								Mer	ge projects

Figure 21: Merge project page.

Projects merged	×
The 3 projects have been successfully merged. The total length of the 3 hydromorphological reaches is 40 km.	
The IH _{glob} value is 0.83.	
C	ок

Figure 22: Output message of Merge Projects.

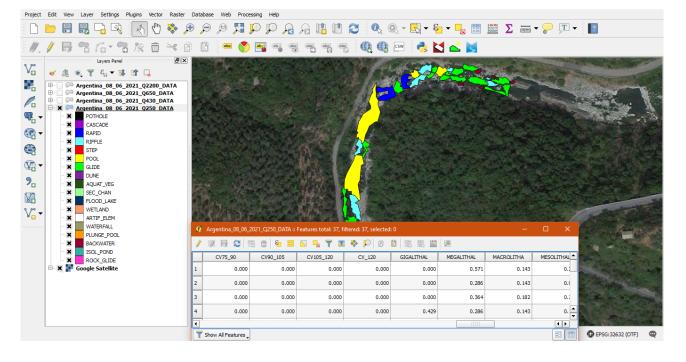
10. Download session

On the homepage, the user can navigate to the "*Download session*" (Figure 23) to download the project results in the form of a compressed folder. Within the download session all user project results are listed (Figure 24).

Homepage	
Calculate session	Download session
Insert hydromorphological information to evaluate river habitats	Download results from the SimStream-Web project database
GO	GO
GO	GO

Figure 23: "Download session" on the SimStream Homepage.

	/ Download session				user1 🛔 间
nomepage /	Download session				
ID	Project	River		\$	
1561	Argentina_perennial	Argentina	Montalto	Download results	
1560	Gaia_temporary	Gaia	El Catllar	Download results	

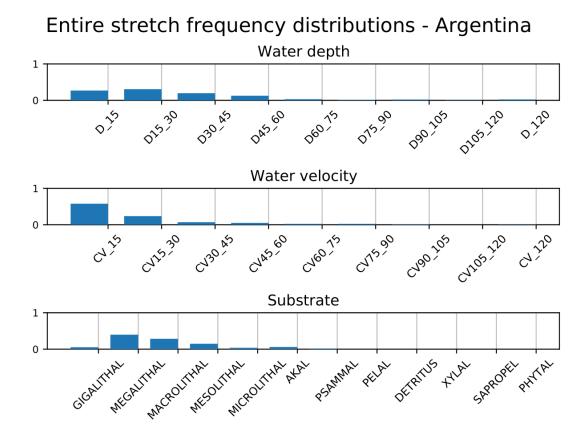

Figure 24: Download session.

The habitat model results are stored in a compressed folder, in which the user can find the following subfolders:

- i. Hydro-morphological unit data
- ii. Habitat suitability
- iii. Biological models
- iv. Habitat-flow rating curves
- v. Streamflow-habitat time series
- vi. UCUT curves
- vii. Habitat Integrity Index

Below, a few examples of project results are reported for perennial and temporary rivers. Note that color formatting of shapefiles is automatic if the project outputs are opened in the QGIS software.

Hydro-morphological unit data (GIS shapefile). Spatial distribution of the hydro-morphological units (HMUs) in the selected river reach, for every discharge condition.

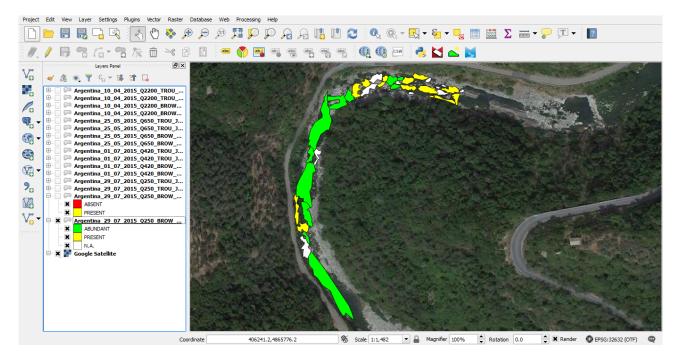


Hydro-morphological unit data (txt file). Habitat attribute tables describing hydro-morphological units (e.g., frequency classes of depth, velocity, and substrate, HMU gradient, cover types), for every discharge condition.

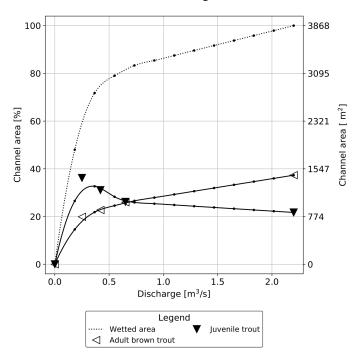
Fil	e Hom	ne Inseri	isci La	ayout di pagin	a For	rmule D	Dati R	evisione	Visualizza	Guida								🖻 Condividi	🖓 Commenti
Inc				- <u>11</u> - A^ <i>J</i> - <u>◇</u> - <u>A</u>		= = % = = •		Testo a cap Unisci e all	io inea al centr		nerale ~ % 000	v 00, 0, 0,€ 00,	Formattazio	ne Formatta c	come Stili		a • 💽 •	AZY Ordina e Trova e filtra ~ seleziona	
Ar	punti 🕠		Caratter	e	F3		Allinea	mento		rs.	Numeri	5		Stili		Celle		Modifica	
AI2	23	• : ×	~	<i>f</i> _x 0.545															~
	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC 🔺
1	D45_60 I	D60_75 D	075_90	D90_105 D1	05_120 [0_120 0	CV_15	CV15_30	CV30_45	CV45_60	CV60_75	CV75_90	CV90_105	CV105_120	CV_120	GIGALITHAL	MEGALITHAL	MACROLITHAL	MESOLITHAL
2	0.286	0	0	0	0	0	0.714	0.143	0.143	0	0	0	0	0	0	C	0.571	0.143	0.286
3	0.143	0	0	0	0	0	1	0	0	0	0	0	0	0	0	C	0.286	0.143	(
4	0.091	0	0	0	0	0	0.545	0.455	0	0	0	0	0	0	0	C	0.364	0.182	0.275
5	0.571	0	0.143	0	0	0	0.429	0.571	0	0	0	0	0	0	0	0.429	0.286	0.143	0.143
6	0	0	0	0	0	0	0.111	0.222	0	0.111	0.222	0.222	0.111	0	0	C	0.444	0.333	0.222
7	0	0	0	0	0	0	0.143	0.429	0.286	0.143	0	0	0	0	0	C	0	0.429	0.571
8	0	0	0	0	0	0	0.857	0	0.143	0	0	0	0	0	0	C	0.571	. 0.429	C
9	0.333	0.222	0	0	0	0	0.778	0.222	0	0	0	0	0	0	0	C	0	0.111	0.556
10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0.143	0.143	0.714	C
11	0	0	0	0	0	0	0.714	0.286	0	0	0	0	0	0	0	C	0.429	0.286	(
12	0	0	0	0	0	0	0.625	0.375	0	0	0	0	0	0	0	C	0.25	0.125	0.125
13	0.25	0	0	0	0	0	0.625	0.25	0.125	0	0	0	0	0	0	C	0.375	0.375	0.125
14	0.222	0	0	0	0	0	0.444	0.556	0	0	0	0	0	0	0	C	0.333	0.333	0.222
15	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0.286	0.143	0.286	0.286
16	0	0	0	0	0	0	0.714	0.286	0	0	0	0	0	0	0	C	0.286	i 0.429	0.286
17	0.125	0	0	0	0	0	0	0.25	0.25	0.25	0	0.25	0	0	0	C	0.5	0.5	¢
18	0	0	0	0	0	0	0.571	0.429	0	0	0	0	0	0	0	C	0.429	0.286	0.286
19	0	0	0	0	0	0	0.375	0.375	0.25	0	0	0	0	0	0	C	0.125	0.75	0.125
20	0.375	0.25	0	0	0	0	0.875	0.125	0	0	0	0	0	0	0	C	0.375	0.125	0.375
21	0.5	0	0	0	0	0	0.75	0.25	0	0	0	0	0	0	0	C	0.625	0.25	C
22	0	0	0	0	0	0	0.875	0.125	0	0	0	0	0	0	0	C	0.375	0.25	0.25
22	0	•	0	n	0	0	0 272	0.455	0.091	0.091	0.091	0	0	0	0		0 192	0 272	0.26/ *
	(Argentir	na_29_07_2	2015_Q250_DA	ATA	\oplus							•						•

Page 22

Hydro-morphological unit data (PDF file). Summary charts of frequency distributions of water depth, flow velocity, and substrate classes, for every discharge condition.

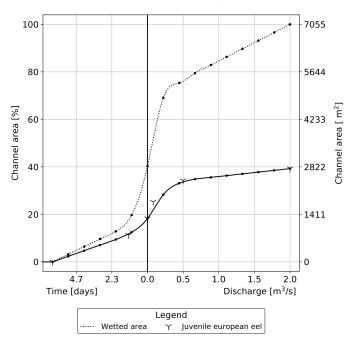

Habitat suitability (GIS shapefile). Habitat suitability maps for a certain species or life stage of interest and for every discharge condition.

Project Edit View Layer Settings Plugins Vector I		Processing Help				
	💺 🗩 🗩 🏓	51 P P A A 🗓	🛄 🔁 🔍 🎯 - 🔛 -	- & - 🔓 📰 📓	: 🔤 🗕 🍃 🛄 🗸 📗	?
// B 3 6 - 3 k i =	< P E 🔤	🜓 🔤 abg abg abg abg	🍬 🔃 🚯 csw 🦂	k 🗹 🛋 🐹 👘		
$\begin{array}{c} & & \\$	· FX	a because of the	and the second second		Argentina_29_07_2015_Q250	_B — 🗆 🗘
					/ 🛛 🖶 😂 📅 💼 🗄	5 🗏 🛯 🗣 🝸
Hereina Argentina10_04_2015_02200_BR(Argentina) Hereina Argentina	ow				HMU_NUM HMU_1	YPE SUI
	w 1995 2006	and the state of the	and the second second	1	1 GLIDE	Suitable
Argentina_01_07_2015_Q420_TRO B- O Argentina_01_07_2015_Q420_BRO	w			2	2 BACKWATE	R Not suitable
Argentina_29_07_2015_0250_TR0 □- ★	U_J W			3	3 GLIDE	Suitable
Not suitable		State of the second state of the		4	4 GLIDE	Suitable
Participantal Suitable				5	5 RIFFLE	Not suitable
Google Satellite			at the set of the set of the	6	6 RIFFLE	Not suitable
			《 上》:"你是你你的	7	7 BACKWATE	R Not suitable
	1990 Aug		A PAR CARE TO	8	8 GLIDE	Suitable
8 ▼		A MARK AND		9	9 BACKWATE	R Suitable
				1	10 BACKWATE	R Not suitable
			Print and a second	1	I 11 GLIDE	Suitable
		A HERE AND A	AN CALIFORNIA	1	2 12 GLIDE	Suitable
		C. R. Barrell		1	3 13 GLIDE	Suitable
		Carlo Carlo		1	14 BACKWATE	R Not suitable
				1	5 15 GLIDE	Optimal
	a contract		Con States	A BACK BACK	Show All Features	
1	Coordinate	406211.4,4865776.2	8 Scale 1:1,482 •	Magnifier 100% Rotation	0.0 🚖 🕱 Render	DEPSG: 32632 (OTF)


Habitat suitability (txt file). Habitat suitability data for a certain species or life stage of interest and	ł
for every discharge condition.	

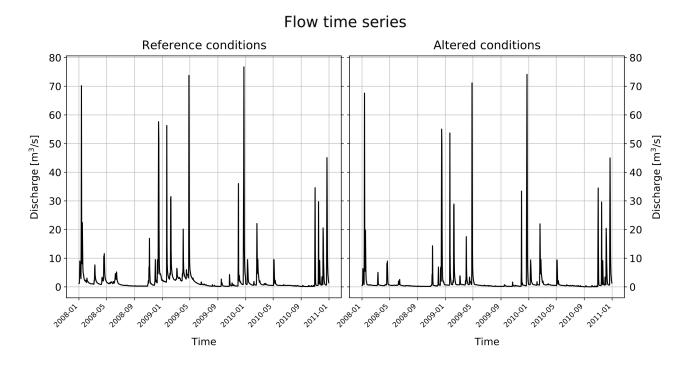
S	Salvataggio auto	matico 💽	8 9 - 9	- ⊳ -	Argentina_29	_07_2015_Q	250_SUI - E	Excel
Fi	le Home	Inserisci	Layout di pag	ina Formul	e Dati	Revision	e Visu	Jalizza
Ľ		alibri	~ 11 ~ A^	A" = =	≡ ॐ~~	ab ce Testo	a capo	
Inc	-□ [] ~ colla ~ ≪	G C <u>S</u> ~	H ~ 💁 ~ 🛓	<u>↓</u> ~ ≡ ≡	≡ = =	🔁 Unisci	e allinea al	cent
A	ppunti 🕠	Cara	ttere	L ²	All	ineamento		
N2	25 *	: × 🗸	f_{x}					
	В	с	D	E	F	G	н	
1	HMU_NUM	HMU_TYPE	BROW_A_R	TROU_J_R				
2	1	GLIDE	Suitable	Optimal				
3	2	BACKWATER	Not suitable	Suitable				
4	3	GLIDE	Suitable	Optimal				
5	4	GLIDE	Suitable	Optimal				
6	5	RIFFLE	Not suitable	Suitable				
7	6	RIFFLE	Not suitable	Not suitable				
8	7	BACKWATER	Not suitable	Optimal				
9	8	GLIDE	Suitable	Optimal				
10	9	BACKWATER	Suitable	Optimal				
11	10	BACKWATER	Not suitable	Optimal				
12	11	GLIDE	Suitable	Optimal				
13	12	GLIDE	Suitable	Optimal				
14	13	GLIDE	Suitable	Optimal				
15	14	BACKWATER	Not suitable	Optimal				
16	15	GLIDE	Optimal	Optimal				
17	16	RIFFLE	Optimal	Suitable				
18	17	GLIDE	Not suitable	Not suitable				
19	18	RIFFLE	Not suitable	Optimal				
20	19	POOL	Optimal	Optimal				
21	20	GLIDE	Suitable	Optimal				
22	21	GLIDE	Suitable	Optimal				
22	22	DICCIC	Not cuitable	Ontimal				1

Biological model (GIS shapefile). Biological model results for a certain species or life stage of interest and for every discharge condition. The results of two binary habitat suitability models are reported: (i) an absence/presence model, to distinguish between not suitable and suitable mesohabitats, and (ii) a presence/abundance model to distinguish between suitable and optimal mesohabitats.

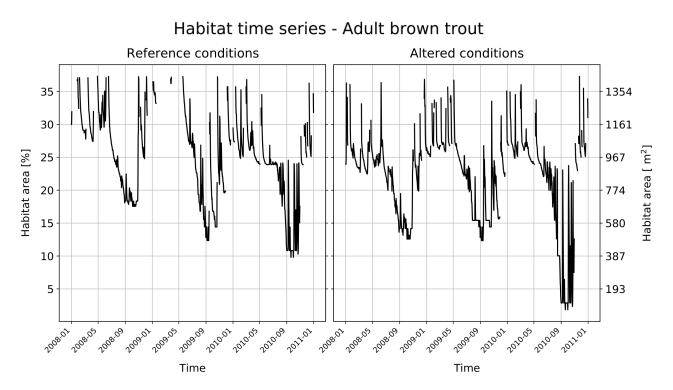

Habitat-flow rating curves (perennial river, PDF file). Habitat-flow rating curves for a perennial river, reported as .pdf file, and representing habitat conditions in the selected river reach.

Habitat-flow rating curves

Habitat-flow-time rating curves (temporary river, PDF file). Habitat-flow-time rating curves for a temporary river (drying case), reported as .pdf file, and representing habitat conditions in the selected river reach.

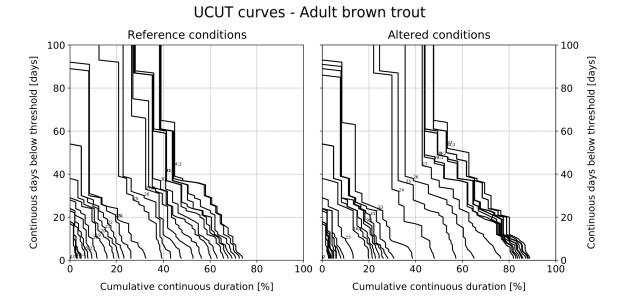

Habitat-flow rating curves (perennial river, txt file). Row data of the habitat-flow rating curve for a perennial river, reported as .txt file.

Ę	ם יר י ה									Habi		
F	ile Hor	ne Inseris	sci Layou	t di pagina	Formule	Dati	Revisione	Visualizza	Guida	🖓 Cosa vuo		
	🖌 Taglia		Calibri	- 11	ĂĂ	= = =	≫r - al	b Testo a cap	00	Gener		
	$ \begin{array}{c c} \Box & \Box & \Box \\ \hline \\ Incolla \\ \hline \\ $											
	Appunti 🗔 Carattere 🗔 Allineamento											
V2	8	- = >	< 🗸	fx								
	А	В	С	D	E	F	G	н	I	J		
1	Available a	rea [%]				Available a	area [sqm]					
2	DIS	WET	BROW_A_	TROU_J_R		DIS	WET	BROW_A_	TROU_J_R			
3	0	0	0	0		0	0	0	0			
4	0.18	48.01	14.6	26.54		0.18	1857.22	564.77	1026.55			
5	0.37	71.78	21.86	32.68		0.37	2776.72	845.46	1264.18			
6	0.55	79.02	24.58	28.3		0.55	3056.92	950.76	1094.57			
7	0.73	83.32	26.6	25.92		0.73	3223.27	1028.87	1002.59			
8	0.92	85.41	27.94	25.39		0.92	3303.91	1080.78	982.31			
9	1.1	87.49	29.28	24.87		1.1	3384.55	1132.7	962.02			
10	1.28	89.58	30.62	24.34		1.28	3465.2	1184.62	941.74			
11	1.47	91.66	31.96	23.82		1.47	3545.84	1236.53	921.46			
12	1.65	93.75	33.31	23.3		1.65	3626.49	1288.45	901.17			
13	1.83	95.83	34.65	22.77		1.83	3707.13	1340.37	880.89			
14	2.02	97.92	35.99	22.25		2.02	3787.77	1392.28	860.61			
15	2.2	100	37.33	21.72		2.2	3868.42	1444.2	840.32			
16												


Habitat-flow-time rating curves (temporary river, txt file). Row data of the habitat-flow-time rating curve for a temporary river (drying case), reported as .txt file.

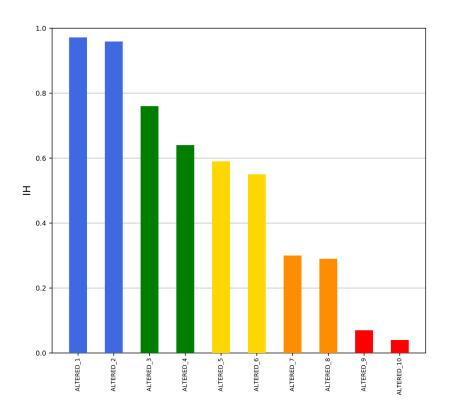
s	alvataggio a	utomatico] り・ 🤆	- D	≂ Ha	bitat-flow_r	ating_curves	_Gaia.txt 👻	R					
Fi	ile Hor	me Inse	erisci Li	ayout di pa	gina F	ormule	Dati R	evisione	Visualizza	Guida					
	$\begin{bmatrix} \bigcirc & \land &$														
T2	T22 • : $\times \checkmark f_x$														
	А	В	С	D	E	F	G	н	I.	J					
1	Available	area [%]				Available	area [sqm]								
2	DIS	DAY	WET	EEEL_J_R		DIS	DAY	WET	EEEL_J_R						
3	0	6.2	0	0		0	6.2	0	0						
4	0	5.17	3.21	2.36		0	5.17	226.4	166.2						
5	0	4.13	6.42	4.71		0	4.13	452.8	332.41						
6	0	3.1	9.63	7.07		0	3.1	679.2	498.61						
7	0	2.07	12.84	9.42		0	2.07	905.6	664.81						
8	0	1.03	19.69	12.5		0	1.03	1388.9	881.53						
9	0	0	40.26	18.27		0	0	2840.52	1288.65						
10	0.22	0	69.13	28.31		0.22	0	4876.94	1996.99						
11	0.44	0	75.34	33.09		0.44	0	5315.13	2334.27						
12	0.67	0	79.46	34.84		0.67	0	5605.82	2457.66						
13	0.89	0	82.88	35.57		0.89	0	5847.33	2509.75						
14	1.11	0	86.31	36.31		1.11	0	6088.85	2561.85						
15	1.33	0	89.73	37.05		1.33	0	6330.36	2613.95						
16	1.56	0	93.15	37.79		1.56	0	6571.88	2666.04						
17	1.78	0	96.58	38.53		1.78	0	6813.4	2718.14						
18	2	0	100	39.27		2	0	7054.91	2770.24						
19															

Streamflow time series (PDF file). Reference (left) and altered (right) flow time series in the selected river reach.

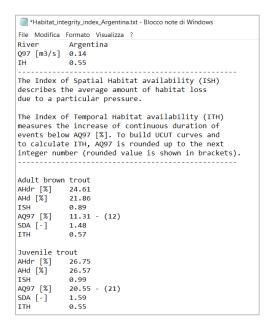

Habitat time series (PDF file). Habitat time series for (left) reference and (right) altered conditions for a certain species or life stage of interest.

Habitat time series (txt file). Row data of the habitat time series for reference and altered conditions for a certain species or life stage of interest.

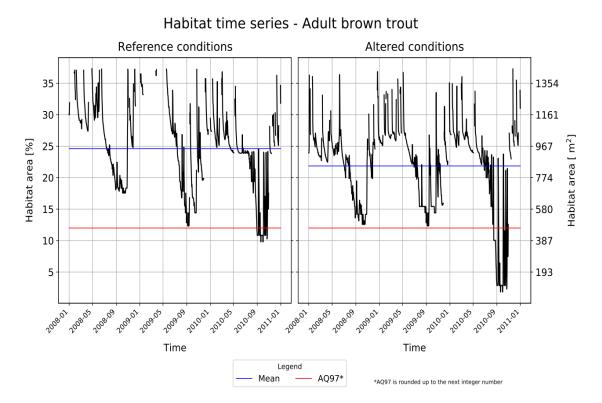
	le Home	Inserisci	Layout di pagina	Formule Dati	Revisione Visual	izza			
	🔥 Taglia	Calibr	i • 11 •	A A = = :	■ ≫ - ab ce Testo	a capo			
nco		6.0	<u>s</u> - 🛛 - 💍	• A • = = =	🔳 🔙 連 🖽 Unisc	i e allin			
Ŧ	؇ Copia f	ormato		_					
	Appunti	Es .	Carattere	E.	Allineamento				
581		: X 4	fx						
	A	В	C	D	E	F			
_	DATE	HAB_REF [%]			HAB_ALTER [sqm]				
62	1/3/2008	29.032		23.44	906.764				
63	2/3/2008	29.032		23.44	906.764				
64	3/3/2008	29.032		23.44	906.764				
65	4/3/2008	29.032		23.44		906.764			
66	5/3/2008	28.417		23.098					
67	6/3/2008	27.751		22.695	877.937				
68	7/3/2008	29.266	1132.135	23.564					
69	8/3/2008			26.275	1016.426				
70	9/3/2008	36.308	1404.556	25.872	1000.849				
71	10/3/2008								
72	11/3/2008								
73	12/3/2008			33.11	1280.835				
_	13/03/2008			27.309	1056.441				
75	14/03/2008			26.845	1038.496				
_	15/03/2008			26.459	1023.556				
77	16/03/2008	37.07	1434.006	26.043	1007.452				
78	17/03/2008	35.269	1364.344	25.628	991.399				
79	18/03/2008	34.09	1318.751	25.333	979.985				
80	19/03/2008	32.999	1276.557	25.04	968.642				
81	20/03/2008	32.055	1240.027	24.767	958.103				
82	21/03/2008	31.821	1230.965	24.697	955.377				
83	22/03/2008	31.631	1223.602	24.638	953.12				
84	23/03/2008	31.016	1199.815	24.397	943.784				
85	24/03/2008	30.54	1181.408	24.184	935.542				
86	25/03/2008	29.881	1155.922	23.873	923.52				
87	26/03/2008	29.5	1141.196	23.684	916.199				
88	27/03/2008	29.5	1141.196	23.684	916.199				
89	28/03/2008	29.127	1126,754	23.491	908.722				


UCUT curves (PDF file). UCUT (Uniform Continuous Under Threshold) curves for all possible thresholds for (left) reference and (right) altered habitat conditions and for a certain species or life stage of interest.

UCUT curves (txt file). Row data of the UCUT (Uniform Continuous Under Threshold) curves for all possible thresholds for a certain species or life stage of interest.

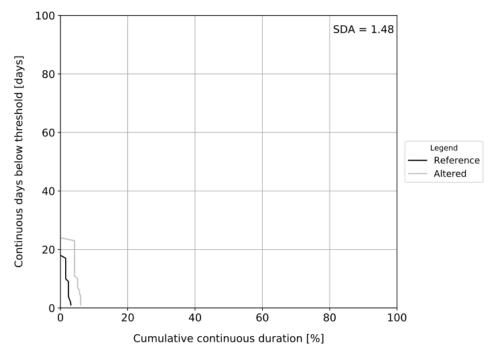

File	Hom	ne Ins	erisci L	ayout di p	pagina F	ormule D	Dati Revis	ione Visu	alizza Gu	ida QCo	osa vuoi fare	?							len en e				P₄ Condividi
Î	👗 Taglia		Calibri			τ _Α =			o a capo		Generale	*	₽				× 🗊	Riem	ma automatio pimento •	ZT	\mathcal{O}		
Incoll	a 🝼 . I Copia		GC	<u>s</u> -	🗄 • 🖄 •	<u>A</u> - ≡ :	= = •	🗲 🔛 Unis	ci e allinea a	al centro 👻	\$ - % 00		Formattazion condizionale			Inserisci Eli	mina Format	Cance	ella -		e Trova e seleziona -		
	Appunti		5	Caratt	tere	5		Allineament	, ,	6	Numer		conuizionale	Stili	· cella ·		elle		м	odifica	Seleziona -		^
AB1	16	•	XV	f _x	44.8																		¥
	А	В		c	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	S	Т	U	V 🔺
1 5	5-10	S-11	S-12	S	-13 5	-14	S-15	S-16	S-17	S-18	S-19	S-20	S-21	S-22	S-23	S-24	S-25	S-26	S-27	S-28	S-29	S-30	S-31 S
2	0.18	1	.46	1.55	1.55	1.55	2.01	2.1	2.1	2.46	2.55	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	15.69
3	0	1	.46	1.55	1.55	1.55	2.01	2.1	2.1	2.46	5.02	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	15.69
4	0	1	.46	1.55	1.55	1.55	2.01	2.1	2.1	2.46	5.02	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	15.69
5	0	1	.46	1.55	1.55	1.55	2.01	2.1	3.92	2.46	5.02	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	
6	0	1	.46	1.55	1.55	1.55	2.01	2.1	5.66	4.56	9.4	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	15.69
7	0	1	.46	1.55	1.55	1.55	2.01	2.1	5.66	4.56	9.4	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	15.69
8	0	1	.46	1.55	1.55	2.55	2.01	3.65	5.66	6.48	9.4	3.38	4.84	4.84	8.03	8.3	12.41	12.41	15.42	15.51	15.6	15.6	
9	0		.46	1.55	1.55	2.55	3.38	3.65	5.66	6.48	9.4	3.38		4.84	8.03	8.3	12.41	12.41					
10	0	-	.46	2.37	2.37	2.55	3.38	3.65	5.66	6.48	9.4	3.38		4.84	8.03	8.3	12.41	12.41					
11	0		.46	2.37	2.37	2.55	3.38	3.65	6.93	6.48	9.4	5.93		4.84	8.03	8.3	12.41	12.41		15.51	15.6		
12	0		.01	2.37	2.37	2.55	3.38	4.84	6.93	6.48	9.4	5.93		4.84	8.03	8.3	12.41	12.41					
13	0		.01	2.37	2.92	3.1	4.38	4.84	6.93	7.94	10.95	5.93		4.84	8.03	8.3	12.41	12.41					
14	0		.01	2.37	2.92	3.1	4.38	4.84	6.93	7.94	10.95	8.21		4.84	8.03	8.3	12.41	12.41					
15	0		.28	2.37	3.28	3.47	4.38	5.75	6.93	7.94	10.95	10.4		4.84	8.03	8.3	12.41	12.41					
16	0		.65	2.65	3.83	4.56	5.11	5.75	6.93	7.94	10.95	10.4		4.84	8.03	8.3	12.41	12.41					
17	0	-	.74	3.01	4.2	4.74	5.11	5.75	6.93	7.94	10.95	10.4		4.84	8.03	8.3	12.41	12.41					
18 19	0		0	3.1 0	4.29	4.74	5.11	5.75	7.57	7.94	10.95	10.4		4.84	8.03	8.3 8.3	12.41	12.41					
20	0		0	0	0	0	5.57 6.3	6.3 6.75	8.12	9.76	10.95	10.4		4.84	8.03	8.3	12.41	12.41		15.51 15.51			
20	0		0	0	0	0	6.3	7.48	8.85	9.76	12.77	10.4		4.84	8.03	8.3	12.41 12.41	12.41					
22	0		0	0	0	0	6.48	7.48	9.12	9.76	12.77	10.4		4.84	8.03	8.3	12.41	12.41		15.51	15.6		
23	0		0	0	0	0	6.48	7.48	9.31	10.31	14.14	11.95		4.84	8.03	8.3	12.41	12.41		15.51	15.6		
24	0		0	0	0	0	0.40	7.66	9.31	10.31	14.14	11.95		4.84	8.03	8.3	12.41	12.41					
25	0		0	0	0	0	0	7.00	0.51	11.04	14.69	11.95		4.84	8.03	8.3	12.41	22.72					
26	0		0	0	0	0	0	0	0	11.31	15.05	13.14			8.03	8.3	12.41	22.72					
27	0		0	0	0	Ő	0	0	0	11.31	15.6	14.23			8.03	8.3	12.41	22.72			15.6		
28	0		0	0	0	0	0	0	0		15.78	14.23			8.03	8.3	12.41	22.72					15.69
4	•	Referen	ce_UCU1	Curves	_Adult_br	0 (+)									1								•

Habitat integrity index (PDF file). Synopsis of the IH index results of all altered hydrological scenarios (from ALTERED_1 to ALTERED_6), reported as a bar chart. IH values are divided in 5 quality classes: High (blue), Good (green), Moderate (yellow), Poor (orange), Bad (red).



IH Synopsis - Scenarios 1 to 10

Habitat integrity index (txt file). IH index and the related metrics and parameters for every altered hydrological scenario, and for every species or life stage of interest (below the results of the ALTERED_6 scenario, i.e. IH = 0.55, is reported).



Habitat integrity index (PDF file). Habitat time series for (left) reference and (right) altered conditions for every altered hydrological scenario and for a given species or life stage of interest (the graph below refers to the ALTERED_6 scenario and adult brown trout). Blue solid lines represent average values of habitat availability used to calculate the Index of Spatial Habitat Availability (ISH). Red solid lines refer to the minimum habitat threshold during low flows (AQ97) in reference conditions, which is used to generate UCUT curves and calculate the Index of Temporal Habitat Availability (ITH).

Page 30

Habitat integrity index (PDF file). UCUT curves for the AQ97 threshold representing habitat condition during low flows for reference (black line) and altered (grey line) hydrological scenarios. AQ97 curves are reported for every hydrological scenario and for every species and life stage of interest (the graph below refers to the ALTERED_6 scenario and adult brown trout. The average distance between AQ97 curves represents the average increase of habitat stress days (Stress Day Alteration – SDA = 1.48) during low flows and allows comparative analysis among different scenarios.

UCUT curves - Adult brown trout